Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

M Rafizadeh ${ }^{\text {a }}$ and V. Amani ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, and ${ }^{\mathbf{b}}$ Tehran Suburb Education Organization, Chahardangeh region, Tehran, Iran

Correspondence e-mail:
rafizadeh@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study
$T=115 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{C})=0.003 \AA$
R factor $=0.036$
$w R$ factor $=0.085$
Data-to-parameter ratio $=19.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Hexaaquanickel(II) bis(dimethyl phosphate)

In the title compound, $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left[\mathrm{O}_{2} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2}\right]_{2}$, the hexaaquanickel(II) dication (Ni site symmetry $\overline{1}$) and the organic anion interact by way of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Recently, we reported the syntheses and crystal structures of $\left[\mathrm{Cu}_{2}(\mathrm{DMP})_{4}(\mathrm{DMSO})\right]_{n}$ (Rafizadeh et al., 2005) and $\left[\mathrm{UO}_{2}(\mu\right.$ DMP) $\left.)_{4}(\mathrm{DMSO})\right]_{n}$ (Rafizadeh et al., 2006), where DMP is dimethyl phosphate, $\left[\mathrm{O}_{2} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2}\right]^{-}$, and DMSO is dimethyl sulfoxide. In these complexes, DMP acts as an O-atom donor ligand, forming coordination polymers in the solid state. As an extension of these studies, we now report the synthesis and structure of the title compound, (I), in which the DMP does not bond to the metal.

(I)

In the title complex, the $\mathrm{Ni}^{\mathrm{II}}$ cation (site symmetry $\overline{1}$) has an octahedral coordination comprising six water O atoms. The P atom of the anion adopts a disorted tetrahedral geometry (Fig. 1). The almost equal $\mathrm{P} 1-\mathrm{O} 1$ and $\mathrm{P} 1-\mathrm{O} 2$ bond lengths (Table 1) imply delocalization of the negative charge. The $\mathrm{Ni}-\mathrm{O}$ and $\mathrm{P}-\mathrm{O}$ bond lengths (Table 1) are in agreement with the corresponding bond lengths in $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{H}_{2} \mathrm{PO}_{2}\right)_{2}$

Figure 1
The structure of (I). Displacement ellipsoids are drawn at the 50% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) $1-x,-y, 1-z$.]

Received 26 June 2006
Accepted 28 June 2006

Figure 2
Packing diagram for (I). Hydrogen bonds are shown as dashed lines.
(Kuratieva et al., 2003). The six water H atoms all participate in hydrogen bonds (Table 2): five of the acceptors are O atoms of the DMP anions and one is another water molecule (Fig. 2).

Experimental

Trimethyl phosphate $(0.97 \mathrm{~g}, 0.8 \mathrm{ml}, 6.72 \mathrm{mmol})$ was added to a solution of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.81 \mathrm{~g}, 3.36 \mathrm{mmol})$ in tetrahydrofuran $(30 \mathrm{ml})$ and the resulting green solution was refluxed at 313 K for 1 h under a nitrogen atmosphere. This solution was left to evaporate slowly at room temperature. After three weeks, green prismatic crystals of (I) were isolated (yield $1.02 \mathrm{~g}, 72.8 \%$, m.p. 375 K).

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{P}\right)_{2}$	$Z=2$
$M_{r}=416.88$	$D_{x}=1.724 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{6} / c$	Mo $K \alpha$ radiation
$a=12.450(2) \AA$	$\mu=1.47 \mathrm{~mm}^{-1}$
$b=7.1208(14) \AA$	$T=115(2) \mathrm{K}$
$c=9.7342(19) \AA$	Prism, green
$\beta=111.492(4)^{\circ}$	$0.20 \times 0.10 \times 0.05 \mathrm{~mm}$
$V=803.0(3) \AA^{\circ}$	
Data collection	
Bruker SMART1000 CCD	5155 measured reflections
\quad diffractometer	1881 independent reflections
ω scans	1346 reflections with $I>2 \sigma(I)$
Absorption correction: multi-scan	$R_{\text {int }}=0.028$
$\quad(S A D A B S ;$ Sheldrick, 1998)	$\theta_{\text {max }}=28.0^{\circ}$
$T_{\text {min }}=0.745, T_{\text {max }}=0.928$	

$\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{P}\right)_{2}$
$M_{r}=416.88$
Monoclinic, $P 2_{1} / c$
$b=7.1208$ (14) A
$c=9.7342$ (19) \AA
$\beta=111.492$ (4) ${ }^{\circ}$
$V=803.0(3) \AA^{3}$

Data collection

Bruker SMART1000 CCD
diffractometer
ω scans
pion correction: multi-scan
$T_{\min }=0.745, T_{\max }=0.928$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.085$
$S=1.09$
1881 reflections
97 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0425 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.96 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.33 \mathrm{e}^{-3}$

Table 1
Selected bond lengths (\AA).

Ni1-O2W	$2.0313(15)$	P1-O2	$1.4982(16)$
Ni1-O3W	$2.0351(17)$	P1-O4	$1.5862(16)$
Ni1-O1 W	$2.0734(15)$	P1-O3	$1.5908(18)$
P1-O1	$1.4920(17)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.83	1.88	2.708 (2)	172
$\mathrm{O} 1 W-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {ii }}$	0.77	1.93	2.691 (2)	172
$\mathrm{O} 2 W-\mathrm{H} 4 \cdots \mathrm{O} 1 W^{\text {iii }}$	0.70	2.16	2.857 (3)	176
$\mathrm{O} 2 W-\mathrm{H} 5 \cdots \mathrm{O} 1^{\text {iv }}$	0.80	1.87	2.668 (2)	178
$\mathrm{O} 3 W-\mathrm{H} 6 \cdots \mathrm{O} 4^{\text {iv }}$	0.77	2.01	2.781 (2)	174
$\mathrm{O} 3 W-\mathrm{H} 7 \cdots \mathrm{O}^{\text {v }}$	0.78	1.92	2.694 (2)	170

Symmetry codes: (i) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1,-y,-z+1$; (iii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (v) $x,-y-\frac{1}{2}, z+\frac{1}{2}$.

The O-bound H atoms were located in difference maps and refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{O})$. The C-bound H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.98 \AA)$ and refined using a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the Teacher Training University for financial support.

References

Bruker (1998). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA. Kuratieva, N. V., Naumova, M. I., Naumov, D. Yu. \& Podberezskaya, N. V. (2003). Acta Cryst. C59, i1-i3.

Rafizadeh, M., Hoseinzadeh, F. \& Amani, V. (2006). Anal. Sci. 22, x3-x4.
Rafizadeh, M., Tayebee, R., Amani, V. \& Nasseh, M. (2005). Bull. Korean Chem. Soc. 26, 594-598.
Sheldrick, G. M. (1998). SADABS (Version 2.01) and SHELXTL (Version 5.10). Bruker AXS, Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

